Abstract

Electrosynthesis, a viable path to decarbonize the chemical industry, has been harnessed to generate valuable chemicals under ambient conditions. Here, we present a membrane-free flow electrolyzer for paired electrocatalytic upcycling of nitrate (NO3−) and chloride (Cl−) to ammonia (NH3) and chlorine (Cl2) gases by utilizing waste streams as substitutes for traditional electrolytes. The electrolyzer concurrently couples electrosynthesis and gaseous-product separation, which minimizes the undesired redox reaction between NH3 and Cl2 and thus prevents products loss. Using a three-stacked-modules electrolyzer system, we efficiently processed a reverse osmosis retentate waste stream. This yielded high concentrations of (NH4)2SO4 (83.8 mM) and NaClO (243.4 mM) at an electrical cost of 7.1 kWh per kilogram of solid products, while residual NH3/NH4+ (0.3 mM), NO2− (0.2 mM), and Cl2/HClO/ClO− (0.1 mM) pollutants in the waste stream could meet the wastewater discharge regulations for nitrogen- and chlorine-species. This study underscores the value of pairing appropriate half-reactions, utilizing waste streams to replace traditional electrolytes, and merging product synthesis with separation to refine electrosynthesis platforms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.