Abstract

We present a new, facile and efficient method to prepare functional graphene (GN) hybrid nanomaterials using direct electrolytic exfoliation of graphite robs in hemin (HN) and single-walled carbon nanotube (SWCNT) solution. During the exfoliation process, HN and SWCNT were simultaneously adsorbed on the surface of GN nanosheets through noncovalent π–π interaction, and then 3D GN–HN–SWCNT hybrid nanomaterials were formed. Due to the synergic effect among GN, HN, and SWCNT, these hybrid nanomaterials possessed excellent electrocatalysis properties and were used to construct novel electrochemical biosensor for H2O2 determination. The results displayed a wide linear range of 0.2μM–0.4mM and a low detection limit of 0.05μM. Moreover, the developed sensor was successfully applied for real samples, such as beverages, and showed great promise in routine sensing applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.