Abstract

We have developed an effective strategy to fabricate a novel non-enzymatic nitrite sensor. Copper nanodendrites (Cu-NDs) and reduced graphene oxide (RGO) were successively deposited on glassy carbon electrode (GCE) via a simple and two-step electrodeposition method. The fabricated sensor showed an excellent electrocatalytic activity for nitrite reduction. Moreover, the effects of electrodeposition circles, Cu2+ concentration, pH value and detection potential on the current responses of Cu-NDs/RGO/GCE toward nitrite were optimized to obtain the maximal sensitivity. Under optimal experimental conditions, Cu-NDs/RGO/GCE demonstrated the low detection limit of 0.4μM nitrite (signal-to-noise ratio, S/N=3), the high sensitivity of 214μAmM−1cm−2, and the wide linear range from 1.25×10−3 to 13mM. The superior response of the sensor to nitrite was mainly attributed to the enlarged surface-to-volume ratio with more electroactive sites and the synergistic effect of Cu-NDs and RGO. This work presented a feasible approach for future research in non-enzymatic amperometric sensors and other surface functionalizing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.