Abstract

A change in the higher-order structure of an oligomeric protein is directly detectable by small-angle scattering. A small-angle X-ray scattering (SAXS) study of the denaturation process of the chaperonin protein GroEL by guanidine hydrochloride (GdnHCl) showed that the disappearance of the quaternary structure can be monitored by using a Kratky plot of the scattered intensities, demonstrating the advantage of the SAXS method over other indirect methods, such as light scattering, circular dichroism (CD), fluorescence and sedimentation. The collapse of the quaternary structure was detected at a GdnHCl concentration of 0.8 Mfor a solution containing ADP (adenosine diphosphate)/Mg2+(2 mM)/K+. From pairwise plots of the change in forward scattering intensityJ(0)/C(weight-average molecular weight) and thez-average (root mean square) radius of gyration against the GdnHCl concentration, the stability and nature of the denatured protein can be determined. The SAXS results suggest that the GroEL tetradecamer directly dissociates to the unfolded coil without going through a globular monomer state. The denatured ensemble is not a single unfolded monomer coil particle, but some mixture of entangled aggregates and a monomer of the coil molecules. Small-angle scattering is a powerful method for the detection and study of changes in quaternary and higher-order structures of oligomeric proteins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.