Abstract
The direct detection of hydrocarbon fluid and the discrimination of water through carbon-13 magnetic resonance imaging (MRI) would be a significant advance in many scientific fields including food, petrogeological, and environmental sciences. Carbon-13 MRI is a noninvasive analytical technique that has great potential for direct detection of hydrocarbons. However, the low natural abundance of carbon-13, low gyromagnetic ratio, and generically short transverse signal lifetimes in realistic porous media all conspire to hinder carbon-13 MRI. A multiple echo pure phase encode MRI technique introduced in this paper helps to overcome these limitations. As a pure phase encode technique, it is immune to artifacts arising from inhomogeneous B0 fields. It is also, by its nature, more quantitative than most MRI methods. Viscous hydrocarbon flow through a sand bed, a simple realistic porous medium, was used as our test system. Flow in this model system was driven by capillary suction. The detection limit, spatially resolved, was determined to be 26 mg.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have