Abstract
Burkholderia pseudomallei, a Gram-negative saprophytic bacillus, is a severe infectious agent that causes melioidosis and soil is the most important reservoir. One hundred and forty soil samples were tested for pH, moisture content and total C and N measurements and used for DNA extraction and culture for B. pseudomallei. The quantitative real-time PCR (qPCR) targeting wcbG, a putative capsular polysaccharide biosynthesis protein gene of B. pseudomallei, was developed to detect the bacterium, and random amplified polymorphic DNA (RAPD) was used to detect the microbial diversity in soil. The acidic pH was correlated with the presence of the bacterium. Forty-four soil sites (44/140, 31.4%) were positive for B. pseudomallei by qPCR, of which 21 were positive by culture. The limit of detection is 32 fg of DNA (about 4 genomes). The RAPD method could classify the soil samples into low diversity (LD) and high diversity (HD) sites. The trend of LD was found with B. pseudomallei positive soil sites. The acidity of the soil or metabolites from organisms in the sites may contribute to the presence of the bacterium. Further investigation of microbes by a more robust method should elucidate biological factors that promote the presence of B. pseudomallei and may be used for controlling the bacterium in the environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transactions of the Royal Society of Tropical Medicine and Hygiene
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.