Abstract
Vibrio vulnificus is an estuarine bacterium capable of causing a rapidly fatal infection in humans. Because of the low nutrient levels and temperature fluctuations found in the organism's natural habitat, the starvation state and viable but nonculturable (VBNC) state are of particular interest. A randomly amplified polymorphic DNA (RAPD) PCR protocol was developed previously for the detection of V. vulnificus strains grown in rich media and has been applied to starved and VBNC cells of V. vulnificus in the present study. As cells were subjected to starvation in artificial seawater, changes in the RAPD profile were detected as early as 15 min into the starvation period. Most noticeable was a uniform loss of RAPD amplification products. By 4 h of starvation, the cells were undetectable by the RAPD method. Cells that had been starved for up to 1 year again became detectable by the RAPD method when nutrients were added to the starvation microcosm. The same loss of signal, but at a lower rate, was also seen as cells entered the VBNC state. VBNC cells were resuscitated by a temperature upshift and were once again detectable by the RAPD method. The addition of chloramphenicol prevented the RAPD signal from being lost in both the starvation and VBNC states. This suggests that DNA binding proteins produced during starvation and entrance into the VBNC state may be responsible for the inability of the RAPD method to amplify V. vulnificus DNA in these states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.