Abstract

Whole-cell current-clamp recordings were made from distal dendrites of rat hippocampal CA1 pyramidal cells. Following depolarization of the dendritic membrane by direct injection of current pulses or by back-propagating action potentials elicited by antidromic stimulation, evoked gamma-aminobutyric acid-A (GABA(A)) receptor-mediated inhibitory postsynaptic potentials (IPSPs) were transiently suppressed. This suppression had properties similar to depolarization-induced suppression of inhibition (DSI): it was enhanced by carbachol, blocked by dendritic hyperpolarization sufficient to prevent action potential invasion, and reduced by 4-aminopyridine (4-AP) application. Thus DSI or a DSI-like process can be recorded in CA1 distal dendrites. Moreover, localized application of TTX to stratum pyramidale blocked somatic action potentials and somatic IPSPs, but not dendritic IPSPs or DSI induced by direct dendritic depolarization, suggesting DSI is expressed in part in the dendrites. These data extend the potential physiological roles of DSI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.