Abstract
If only experimental measurements are available, direct data-driven control design becomes an appealing approach, as control performance is directly optimized based on the collected samples. The direct synthesis of a feedback controller from input-output data typically requires the blind choice of a reference model, that dictates the desired closed-loop behavior. In this paper, we propose a data-driven design scheme for linear parameter-varying (LPV) systems to account for soft performance specifications. Within this framework, the reference model is treated as an additional hyper-parameter to be learned from data, while the user is asked to provide only indicative performance constraints. The effectiveness of the proposed approach is demonstrated on a benchmark simulation case study, showing the improvement achieved by allowing for a flexible reference model.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.