Abstract

The subregions of the entorhinal cortex (EC) are conventionally thought to compute dichotomous representations for spatial processing, with the medial EC (MEC) providing a global spatial map and the lateral EC (LEC) encoding specific sensory details of experience. Yet, little is known about the specific types of information EC transmits downstream to the hippocampus. Here, we exploit invivo sub-cellular imaging to record from EC axons in CA1 while mice perform navigational tasks in virtual reality (VR). We uncover distinct yet overlapping representations of task, location, and context in both MEC and LEC axons. MEC transmitted highly location- and context-specific codes; LEC inputs were biased by ongoing navigational goals. However, during tasks with reliable reward locations, the animals' position could be accurately decoded from either subregion. Our results revise the prevailing dogma about EC information processing, revealing novel ways spatial and non-spatial information is routed and combined upstream of the hippocampus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call