Abstract
The entorhinal-hippocampal circuitry has been suggested to play an important role in episodic memory but the contribution of the entorhinal cortex remains elusive. Predominant theories propose that the medial entorhinal cortex (MEC) processes spatial information whereas the lateral entorhinal cortex (LEC) processes non spatial information. A recent study using an object exploration task has suggested that the involvement of the MEC and LEC spatial and non-spatial information processing could be modulated by the amount of information to be processed, i.e. environmental complexity. To address this hypothesis we used an object exploration task in which rats with excitotoxic lesions of the MEC and LEC had to detect spatial and non-spatial novelty among a set of objects and we varied environmental complexity by decreasing the number of objects or amount of object diversity. Reducing diversity resulted in restored ability to process spatial and non-spatial information in MEC and LEC groups, respectively. Reducing the number of objects yielded restored ability to process non-spatial information in the LEC group but not the ability to process spatial information in the MEC group. The findings indicate that the MEC and LEC are not strictly necessary for spatial and non-spatial processing but that their involvement depends on the complexity of the information to be processed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.