Abstract

The electrical resistance of single VO(2) nanobeams was measured while simultaneously mapping the domain structure with Raman spectroscopy to investigate the relationship between structural domain formation and the metal-insulator transition. With increasing temperature, the nanobeams transformed from the insulating monoclinic M(1) phase to a mixture of the Mott-insulating M(2) and metallic rutile phases. Domain fractions were used to extract the temperature dependent resistivity of the M(2) phase, which showed an activated behavior consistent with the expected Mott-Hubbard gap. Metallic monoclinic phases were also produced by direct injection of charge into devices, decoupling the Mott metal-insulator transition from the monoclinic to rutile structural phase transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call