Abstract

AbstractSelective synthesis of higher alcohols from syngas is promising but remains challenging owing to the low stability and selectivity towards higher alcohols. Here we introduce a CuCoAl|t‐ZrO2 (t denotes tetragonal crystal phase) multifunctional catalyst that can achieve an alcohol selectivity of 64.8 % with 79.6 % C2+OH, and a total selectivity of alcohols and olefins to 81.7 %. The proper proximity was tuned to increase selectivity towards alcohols and decrease the selectivity towards hydrocarbons. The lower surface [H*]/[C*] ratio due to the stronger basic sites of the CuCoAl|t‐ZrO2 limited alkyl (CHx) species hydrogenation, and promoted CO insertion and carbon chain growth, resulting in improving the alcohols selectivity. Meanwhile, the weaker adsorption of bridge‐type adsorbed CO and the lower decomposition rate of multi‐bonded adsorbed CO over CuCoAl|t‐ZrO2 inhibited hydrocarbon generation. The selective promotion of the reaction route via the synergetic effect between CuCoAl and t‐ZrO2 was proposed to boost higher alcohols selectivity. This work may aid the rational design of effective multifunctional catalyst with synergistic effects for tuning selectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.