Abstract
The purpose was to compare logistic regression model (LRM) and recursive partitioning (RP) to predict pathologic complete response to preoperative chemotherapy in patients with breast cancer. The two models were built in a same training set of 496 patients and validated in a same validation set of 337 patients. Model performance was quantified with respect to discrimination (evaluated by the areas under the receiver operating characteristics curves (AUC)) and calibration. In the training set, AUC were similar for LRM and RP models (0.77 (95% confidence interval, 0.74-0.80) and 0.75 (95% CI, 0.74-0.79), respectively) while LRM outperformed RP in the validation set (0.78 (95% CI, 0.74-0.82) versus 0.64 (95% CI, 0.60-0.67). LRM model also outperformed RP model in term of calibration. In these real datasets, LRM model outperformed RP model. It is therefore more suitable for clinical use.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.