Abstract
Effective sterilization methods for single-use devices are a growing need for the medical industry. Concerns with safety, throughput and source availability, however, prompt prudent contingency planning for gamma irradiation of devices suited for radiation sterilization. Electron beam (e-beam) and X-ray represent two alternatives to gamma radiation if they can be confirmed to be compatible with sterilization of the devices. To address this question, the effects of sterilization-relevant doses of e-beam and X-ray radiation are directly compared to the effects of gamma radiation using two prototypical commercial devices currently sterilized using cobalt-60 gamma radiation. These devices include components that comprise six distinct polymer materials commonly used in the medical device industry. The devices investigated are the Becton, Dickinson and Company (BD) VacutainerTMPlus tube, comprised of low-density polyethylene, chlorobutyl rubber, and polyethylene terephthalate components; and the BD VacutainerTMPush Button Blood Collection Set, containing polypropylene, polyolefin elastomer, and polyvinyl chloride components. Changes in functionality, discoloration and select mechanical properties of components of each device were measured following exposure to targeted doses of 15, 35, 50 and 80 kGy. A statistical analysis was performed to determine if the effects of e-beam or X-ray radiation differ from the effects of gamma radiation for the properties considered. No devices were found to fail the functional performance tests at any of the doses considered. Small, but statistically significant differences were observed in device discoloration from e-beam, X-ray and gamma radiation following processing for certain materials at certain dose levels. Both e-beam and X-ray irradiation appear as viable alternatives to gamma irradiation for sterilization of the medical devices and materials considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.