Abstract
ABSTRACTScreening and detecting virus by receptor-ligand interactions presents an important challenge in medical and environmental diagnostics, and in drug development. We have developed a direct colorimetric detection method based on a polymeric bilayer assembly. The bilayer is composed of a self-assembled monolayer of octadecyl siloxane and a Langmuir-Blodgett layer of polydiacetylene. The polydiacetylene layer is functionalized with receptor-specific ligands such as analogs of sialic acid. The ligand serves as a molecular recognition element, while the conjugated polymer backbone signals binding at the surface by a chromatic transition. The color transition is readily visible to the naked eye as a blue to red color change and can be quantified by visible absorption spectroscopy. The color transition can be inhibited by the presence of soluble inhibitors. Raman spectroscopic analysis shows that the color transition may arise from binding induced strain on the material resulting in bond elongation and conjugation length reduction.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have