Abstract

Boron distribution at grain boundaries in hot-deformed nickel is directly characterized by the time-of-flight secondary ion mass spectrometry. The segregations of boron are observed at both the random and twin grain boundaries. Two types of segregations at random grain boundaries are observed. The first type of segregation has a high intensity and small width. Its formation is attributed to the incorporating of dislocations into the moving grain boundaries. The second type of segregation arises from the cooling induced segregation at the dislocations associated with the grain boundaries. The segregation at twin boundary is similar to the second type of segregation at random grain boundaries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.