Abstract
Maneuvering abilities of underwater vehicles are one of the primary concerns for navies and in the civil field they provide great flexibility in working in confined environments. Numerical simulations of the motions of these vessels may be conducted via system-based or direct CFD approaches. In this study, we focus on direct CFD simulations of the benchmark DARPA Suboff AFF8 Configuration. The paper starts by showing the submarine's lack of course-keeping stability using the C-index. After validation of the numerical approach by self-propulsion tests (and the determination of the propeller rotation rate to achieve the required velocity), the results of an extensive set of standard maneuvering tests are presented. Turning circle, pullout and zig-zag tests confirm that the DARPA Suboff does not have course-keeping ability. The submarine leans to the starboard side at neutral rudder angle. The maneuvering indices are investigated with respect to changing rudder angle with turning circle tests. High residual yaw rates are found in both side turnings in the pullout tests and the zig-zag tests show the submarine's inadequacy in making sharp turns. Numerical simulations reveal that the DARPA Suboff has high turning ability but no course-keeping ability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.