Abstract
A family of nitrogen-enriched ultramicroporous carbon materials was prepared by direct carbonization of task-specifically designed molecular carbon precursors of cyanopyridinium-based crystalline dicationic salts (CISs). Varying the molecular structure of CISs, large surface area (918 m(2) g(-1)), high N content (20.10 wt %), and narrow distributed ultramicropores (0.59 nm) can be simultaneously achieved on the sample PCN-14 derived from methyl-linked 4-cyanopyridinium D[4-CNPyMe]Tf2N. It therefore exhibited exceptional performance in greenhouse gas CO2 capture, i.e., simultaneously possessing (1) high CO2 adsorption uptakes: 5.33 mmol g(-1) at 273 K, and 3.68 mmol g(-1) at 298 K (both at 1.0 bar); (2) unprecedented selectivity of CO2 versus N2: 156; and (3) a high adsorption ratio of CO2 to N2: 148 (at 1.0 bar). This is the first time such a high selectivity and adsorption ratio over carbon materials has been achieved, which is among the highest values over solid adsorbents.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have