Abstract

Identification of different mitochondrial reactive oxygen species (ROS) simultaneously in living cells is vital for understanding the critical roles of different ROS in biological processes. To date, it remains a great challenge to develop ROS probes for direct and simultaneous identification of multiple ROS with high specificity. Herein, we report a SERS-borrowing-strategy-based nanoprobe (Au@Pt core-shell nanoparticles) for simultaneous and direct identification of different ROS by their distinct Raman fingerprints. Isotope substitution experiments and DFT calculations confirmed the ability of Au@Pt nanoprobe to capture and identify different mitochondrial ROS (i.e. ⋅OOH, H2 O2 , and ⋅OH). When functionalized with triphenylphosphine (TPP), the Au@Pt-TPP nanoprobe located to mitochondria and detected multiple ROS simultaneously in living cells under oxidative stimulation. Our method offers a new tool for the study of the functions of various ROS in biological processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call