Abstract

In this paper we study both direct and inverse eigenvalue problems for diagonal-plus-semiseparable (dpss) matrices. In particular, we show that the computation of the eigenvalues of a symmetric dpss matrix can be reduced by a congruence transformation to solving a generalized symmetric definite tridiagonal eigenproblem. Using this reduction, we devise a set of recurrence relations for evaluating the characteristic polynomial of a dpss matrix in a stable way at a linear time. This in turn allows us to apply divide-and-conquer eigenvalue solvers based on functional iterations directly to dpss matrices without performing any preliminary reduction into a tridiagonal form. In the second part of the paper, we exploit the structural properties of dpss matrices to solve the inverse eigenvalue problem of reconstructing a symmetric dpss matrix from its spectrum and some other informations. Finally, applications of our results to the computation of a QR factorization of a Cauchy matrix with real nodes are provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.