Abstract

The thermal expansion induced by the exothermic chemical reactions taking place in a turbulent reactive flow affects the velocity field so strongly that the large-scale velocity fluctuations as well as the small-scale velocity gradients can be governed by chemistry rather than by turbulence. Moreover, thermal expansion is well known to be responsible for counter-gradient turbulent diffusion and flame-generated turbulence phenomena. In the present study, by making use of an original splitting procedure applied to the velocity field, we establish the occurrence of two distinct thermal expansion effects in the flamelet regime of turbulent premixed combustion. The first is referred to as the direct thermal expansion effect. It is associated with a local flamelet crossing contribution as previously considered in early analyses of turbulent transport in premixed flames. The second, denoted herein as the indirect thermal expansion effect, is an outcome of the turbulent wrinkling processes that increases the flame surface area. Based on a splitting procedure applied to the velocity field, the respective influences of the two effects are identified and analysed. Furthermore, the theoretical analysis shows that the thermal expansion induced through the local flames can be treated separately in the usual continuity and momentum equations. This description of the turbulent reactive velocity field, leads also to relate all of the usual turbulent quantities to the reactive scalar field. Finally, algebraic closures for the turbulent transport terms of mass and momentum are proposed and successfully validated through comparison with direct numerical simulation data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.