Abstract

Fibroblastic growth factor 23 (FGF23) is a bone-derived hormone that has a pivotal role in the pathogenesis of mineral disorders in chronic kidney disease. To study the effect of parathyroid hormone (PTH) on FGF23, rats were parathyroidectomized for a week and then implanted with constant-delivery infusion pumps to provide vehicle, a physiological, or a threefold supraphysiological dose of parathyroid hormone. Parathyroidectomy resulted in a significant decrease in blood ionized calcium, FGF23, and calcitriol along with an increase in phosphorus concentrations. PTH replacement produced a dose-dependent increase in ionized calcium and FGF23 with decreased phosphorus. Calcitriol was also increased but there was no dose effect of PTH treatment. To maintain normal plasma calcitriol levels, two additional groups of parathyroidectomized rats were given calcitriol and temporarily treated with vehicle or the supraphysiological dose of PTH. FGF23 was significantly increased by calcitriol in the vehicle-treated rats but was not further increased above that in rats given the supraphysiological dose of PTH in the absence of calcitriol. Klotho expression in the kidney decreased after parathyroidectomy but was restored by hormone supplementation. Hence, our results show a direct and an indirect effect of PTH on FGF23 secretion, the latter through changes in calcitriol concentrations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call