Abstract

Organic materials with radical characteristics are gaining increasing attention, due to their potential implications in highly efficient utilization of solar energy. Manipulating intermolecular interactions is crucial for tuning radical properties, as well as regulating their absorption bands, and thus improving the photothermal conversion efficiency. Herein, a diradical-featured organic small-molecule croconium derivative, CR-DPA-T, is reported for highly efficient utilization of solar energy. Upon aggregation, CR-DPA-T exists in dimer form, stabilized by the strong intermolecular π-π interactions, and exhibits a rarely reported high-spin state. Benefiting from the synergic effects of radical characteristics and strong intermolecular π-π interactions, CR-DPA-T powder absorbs broadly from 300 to 2000nm. In-depth investigations with transient absorption analysis reveal that the strong intermolecular π-π interactions can promote nonradiative relaxation by accelerating internal conversion and facilitating intermolecular charge transfer (ICT) between dimeric molecules to open up faster internal conversion pathways. Remarkably, CR-DPA-T powder demonstrates a high photothermal efficiency of 79.5% under 808nm laser irradiation. By employing CR-DPA-T as a solar harvester, a CR-DPA-T-loaded flexible self-healing poly(dimethylsiloxane) (H-PDMS) film, named as H-PDMS/CR-DPA-T self-healing film, is fabricated and employed for solar-thermal applications. These findings provide a feasible guideline for developing highly efficient diradical-featured organic photothermal materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.