Abstract

To alleviate the predicament of resource shortage and environmental pollution, efficiently using abundant solar energy is a great challenge. Herein, we prepared unique photothermal conversion phase-change materials, namely, CNT@PCMs, by introducing carbon nanotubes (CNTs) used as photothermal conversion materials into the recyclable matrix of phase-change materials (PCMs). These devised CNT@PCMs cleverly combine the photothermal conversion capability of CNTs and the thermal energy storage capability of traditional PCMs. Especially, the surface temperature of the prepared CNT@PCMs can be raised to 100 °C within 165 s under the solar simulator (150 mW cm-2), showing a surprising heating rate that is much higher than that of the reported works and achieving a higher photothermal conversion efficiency for solar energy in this work. Furthermore, these CNT@PCMs can hold high melting latent heat with a maximum value at 110.0 J g-1, exhibiting remarkable thermal storage ability aside from preeminent photothermal conversion capability. Intriguingly, the introduction of dynamic oxime group-carbamate bonds into the molecular structure can endow CNT@PCMs with an outstanding self-healing performance and recyclability. The broken CNT@PCMs sample can be healed in 2 min under IR-laser irradiation. Importantly, the phase-change and mechanical properties and photothermal conversion efficiency of CNT@PCMs can also remain virtually unchanged after multiple recycles. It is of great significance to design this style of CNT@PCMs for achieving the efficient utilization of solar energy and environmental protection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call