Abstract

Cardiovascular stents are commonly used for the treatment of cardiovascular diseases that in developed societies are the most frequent causes of mortality and morbidity. In recent years, thorough research and development of drug-eluting stents has been done, with emphasis on coronary stenting to avoid the most common complication, in-stent thrombosis. Dipyridamole (DPM) is a medication that inhibits blood clot formation. Drug delivery nanoplatforms consisting of biodegradable polymers can be fabricated via electrospinning deposition, known for its cost-effective and versatile advantages, that produces fibrous scaffolds that are able to sustain and control drug release. A novel drug delivery nanosystem of polylactic acid fibrous scaffold loaded with the anti-platelet drug DPM was fabricated by electrospinning as coating for cardiovascular stents. The surface morphology and topography that were evaluated via atomic force microscopy, scanning electron microscopy and optical microscopy, were found to be good and suitable for tissue engineering. Contact angle measurements established the hydrophobic behavior of these fibrous nanoplatforms. Drug-release kinetics and degradation studies were conducted and revealed a sustained and controllable release of DPM, through this fibrous matrix over time. Finally, cytotoxicity studies took place to evaluate the cytocompatibility of the scaffold that confirmed its compatible behavior. The successful performance of this nanoplatform can lead to it being a valuable tool for atherosclerosis treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.