Abstract

Present work explores the profiles of polarizability (αp) and electric dipole moment (μ) of impurity doped GaAs quantum dot (QD) under the aegis of spatially-varying effective mass, spatially-varying dielectric constant and anisotropy of the system. Presence of noise has also been invoked to examine how its intervention further tunes αp and μ. Noise term maintains a Gaussian white feature and it has been incorporated to the system through two different roadways; additive and multiplicative. The various facets of influence of spatially-varying effective mass, spatially-varying dielectric constant and anisotropy on αp and μ depend quite delicately on presence/absence of noise and also on the mode through which noise has been administered. The outcomes of the study manifest viable routes to harness the dipole moment and polarizability of doped QD system through the interplay between noise, anisotropy and variable effective mass and dielectric constant of the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.