Abstract

Present study examines the pattern of variation of electric dipole moment (μ) and polarizability (αp) of impurity doped GaAs quantum dots (QDs) under combined presence of hydrostatic pressure and temperature and in presence of noise. Noise term carries a Gaussian white character and it has been introduced to the system via two different pathways; additive and multiplicative. Profiles of μ and αp have been monitored against the variations of hydrostatic pressure (HP), temperature and the noise strength. Under a given condition of HP and temperature, application of noise prominently influences the above two properties. However, the extent of influence depends on the noise strength and the pathway through which noise is introduced. The findings divulge feasible routes to control the dipole moment and polarizability of doped QD system through the interplay between HP, temperature and noise.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.