Abstract

Optical absorption spectra for nanostructures and solids can be obtained from the macroscopic dielectric function within the random phase approximation. While experimental spectra can be reproduced with good accuracy, important properties, such as the charge-transfer character associated with a particular transition, are not retrievable. This contribution presents a computationally inexpensive method for the analysis of optical and excitonic properties for extended systems based on solely their electronic ground-state structure. We formulate a perturbative orbital transformation theory based on dipole-induced transition moments between orbitals, which yields correlated pairs of particle and hole functions. To demonstrate the potency of this new transformation formalism, we investigate the nature of excitations in inorganic molecular complexes and in extended systems. With our method, it is possible to extract mechanistic insights from the transitions observed in the optical spectrum, without requiring explicit calculation of the many-electron excited states.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call