Abstract
The formation of long-lived (tau less, similar10 mus) dipole-bound CH(3)CN(-) ions through electron transfer in K(14p)CH(3)CN collisions is investigated as a function of target temperature. The rate for their formation is observed to decrease steadily with increasing target temperature. The results are consistent with earlier suggestions that only target molecules in the ground vibrational state and low-lying rotational states can form long-lived dipole-bound anions. For CH(3)CN, the data indicate that creation of long-lived ions requires that the target molecules be in states with rotational quantum numbers j less, similar20. The measurements further demonstrate that the lifetime of the longest-lived (tau greater, similar50 mus) ions is limited by blackbody-radiation-induced photodetachment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.