Abstract

We demonstrate the dipole-assisted carrier transport properties of bis(trifluoromethane)sulfonamide (TFSI)-treated O-ReS2 field-effect transistors. Pristine ReS2 was compared with defect-mediated ReS2 to confirm whether the presence of defects on the interface enhances the interaction between O-ReS2 and TFSI molecules. Prior to the experiment, density functional theory (DFT) calculation was performed, and the result indicated that the charge transfer between TFSI and O-ReS2 is more sensitive to external electric fields than that between TFSI and pristine ReS2. After TFSI treatment, the drain current of O-ReS2 FET was significantly increased up to 1,113.4 times except in the range of −0.32−0.76 V owing to Schottky barrier modulation from dipole polarization of TFSI molecules, contrary to a significant degradation in device performance in pristine ReS2 FET. Moreover, in the treated O-ReS2 device, the dipole direction was highly influenced by the voltage sweep direction, generating a significant area of hysteresis in I–V and transfer characteristics, which was further verified by the surface potential result. Furthermore, the dipole state was enhanced according to the wavelength of the light source and photocurrent. These results indicate that TFSI-treated ReS2 FET has large potential for use as next-generation memristor, memory, and photodetector.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.