Abstract
Herein we have investigated the formation and interplay of several noncovalent interactions (NCIs) involved in the inhibition of human monoamine oxidase B (MAO B). Concretely, an inspection of the Protein Data Bank (PDB) revealed the formation of a halogen bond (HlgB) between a diphenylene iodonium (DPI) inhibitor and a water molecule present in the active site, in addition to a noncovalent network of interactions (e. g. lone pair-π, hydrogen bonding, OH-π, CH-π and π-stacking interactions) with surrounding protein residues. Several theoretical models were built to understand the strength and directionality features of the HlgB in addition to the interplay with other NCIs present in the active site of the enzyme. Besides, a computational study was carried out using DPI as HlgB donor and several electron rich molecules (CO, H2O, CH2O, HCN, pyridine, OCN-, SCN-, Cl- and Br-) as HlgB acceptors. The results were analyzed using several state-of-the-art computational tools. We expect that our results will be useful for those scientists working in the fields of rational drug design, chemical biology as well as supramolecular chemistry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chemphyschem : a European journal of chemical physics and physical chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.