Abstract

Dipeptidyl peptidase IV (DPPIV) is a serine protease with tumor suppressor function. It regulates the activities of mitogenic peptides implied in cancer development. Progression of benign prostate cancer to malignant metastasis is linked to increased production of basic fibroblast growth factor (bFGF), a powerful mitogen. In this study, using in vitro model system we show that DPPIV loss is associated with increased bFGF production in metastatic prostate cancer cells. DPPIV reexpression in prostate cancer cells blocks nuclear localization of bFGF, reduces bFGF levels, inhibits mitogen-activated protein kinase (MAPK)-extracellular signal-regulated kinase (ERK)1/2 activation, and decreases levels of urokinase-type plasminogen activator, known downstream effectors of bFGF signaling pathway. These molecular changes were accompanied by induction of apoptosis, cell cycle arrest, inhibition of in vitro cell migration, and invasion. Silencing of DPPIV by small interfering RNA resulted in increased bFGF levels and restoration of mitogen-activated protein kinase (MAPK)-extracellular signal-regulated kinase (ERK)1/2 activation. These results indicate that DPPIV inhibits the malignant phenotype of prostate cancer cells by blocking bFGF signaling pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call