Abstract

Dioxouranium [UO 2(VI)] complexes with three degrees of substitution of cellulose acetate, prepared from viscose pulp (DS = 2.2, 2.45 and 2.86), have been synthesis and characterized. Degree of substitution (DS) is defined as the average number of CH groups substituted on each anhydrocellulose repeat unit. Probable structures of the cellulose acetate complexes were inferred from the elemental analysis data, conductance measurements, IR, electronic and 1H NMR spectra. The results obtained show that the formula of UO 2(VI) complex with cellulose acetate of DS = 2.2 and 2.45 [(CA) 4.UO 2] is more probable than [(CA) 2.UO 2].2(CH 3COO), while the reverse is true for the case of a UO 2 complex with CA of DS = 2.86. For the former formula, cellulose acetate acts as a uni-negatively charged bidentate ligand and reacts with UO 2 2+ through the ether-carbon-oxygen of the secondary acetylated hydroxyl group of the anhydroglucose unit and the oxygen atom of the residual secondary unacetylated hydroxyl group, forming a five-membered chelate ring. For the later formula, cellulose acetate of DS = 2.86 acts as a neutral bidentate chelating agent through the two ether oxygen atoms of the vicinal ester groups of secondary acetylated hydroxyl groups in anhydroglucose units also forming a five-membered chelate ring. The uranium atom in these complexes is 8-coordinate. The thermal behaviour of cellulose diacetate (DS = 2.2) and cellulose triacetate (DS = 2.86) and their complexes with uranyl acetate in nitrogen atmosphere has been also studied by differential thermal analysis from room temperature to 600 °C. The obtained DTA curves were analyzed using the Prout-Tompkins law. The method of least squares was applied to estimate the appropriate order of the reaction ( n), and consequently the thermodynamic parameters. The results revealed that chelation of cellulose acetate with uranyl acetate led to increased thermal stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.