Abstract
AbstractWe show that the parabola is of strong Khintchine type for convergence, which is the first result of its kind for curves. Moreover, Jarník type theorems are established in both the simultaneous and the dual settings, without monotonicity on the approximation function. To achieve the above, we prove a new counting result for the number of rational points with fixed denominators lying close to the parabola, which uses Burgess’s bound on short character sums.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mathematical Proceedings of the Cambridge Philosophical Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.