Abstract

Sets of the general form where U is a subset of ℛ k and is a family of subsets of U indexed by a set J , are common in the theory of Diophantine approximation [4, 7, 18, 19]. They are also closely connected with exceptional sets arising in analysis and with sets of “small divisors” in dynamical systems [1, 8, 15”. When J is the set of positive integers ℕ, the set Λ(ℱ) is of course the lim-sup of the sequence of sets F j , j = 1, 2,… [11, p. 1]. We will also call sets of the form (1), with the more general index set J, lim-sup sets. When such lim-sup sets have Lebesgue measure zero, it is of interest to determine their Hausdorff dimension. It is usually difficult to obtain a good lower bound for the Hausdorff dimension (and it can be much harder to determine than an upper bound). In this paper we will obtain a lower bound for the dimension of lim-sup sets of the form (1) for a fairly general class of families ℕ which includes a range of results in the theory of Diophantine approximation. This lower bound depends explicitly on the geometric structure and distribution in U of the sets F α in ℕ.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call