Abstract

AbstractWe prove that product‐free subsets of the free group over a finite alphabet have maximum upper density with respect to the natural measure that assigns total weight one to each set of irreducible words of a given length. This confirms a conjecture of Leader, Letzter, Narayanan, and Walters. In more general terms, we actually prove that strongly ‐product‐free sets have maximum upper density in terms of this measure. The bounds are tight.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.