Abstract

Single-walled carbon nanotubes (SWCNT) were prepared using iron catalysts deposited by indirect evaporation on silicon substrate covered with 500 nm-thick thermal oxide. Diode SWCNT devices have been fabricated using Au and Al, as the asymmetric metal contacts, and a random network of metallic and semiconducting nanotubes as the device channel. No effort was made to align the SWCNTs or to eliminate metallic nanotubes in our devices. Asymmetric voltage–current behavior was seen. Current rectification was observed in the source–drain bias range of − 3 V to + 3 V. Rectification was somewhat surprising since, although metallic tubes are in the minority (∼ 1/3), they could potentially act as shunts and mask the electric properties of the semiconducting majority. No correlation between electrode spacing and current rectification was observed. The lowest leakage current measured was 1% of the maximum current carrying capacity. Maximum forward-biased current capacities range between 8 μA and 841 μA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.