Abstract

High quantum efficiencies and low current thresholds are important properties for all classes of semiconductor light emitting devices (LEDs), including nanoscale emitters based on single wall carbon nanotubes (SWNTs). Among the various configurations that can be considered in SWNT LEDs, two terminal geometries with asymmetric metal contacts offer the simplest solution. In this paper, we study, experimentally and theoretically, the mechanisms of electroluminescence in devices that adopt this design and incorporate perfectly aligned, horizontal arrays of individual SWNTs. The results suggest that exciton mediated electron-hole recombination near the lower work-function contact is the dominant source of photon emission. High current thresholds for electroluminescence in these devices result from diffusion and quenching of excitons near the metal contact.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.