Abstract

The two mid-infrared bands of the CF2CHF molecule, ν5centered at 1172.673 cm−1and ν6+ ν9at 1155.105 cm−1, were measured on a tunable diode laser spectrometer with a resolution near the Doppler limit. These vibrations ofA′ species give rise toa/bhybrid bands, even though our analysis has pointed out that the intensity of thea-type component is predominant. Most of theJandKstructure has been resolved in different subbranches, and the rovibrational analysis led to the assignment of about 1400 (J≤ 60,Ka≤ 22,Kc≤ 60) and 90 (J≤ 56,Ka≤ 5,Kc≤ 56) lines of the ν5and ν6+ ν9bands, respectively. Using Watson'sA-reduction Hamiltonian in theIrrepresentation, a set of accurate spectroscopic constants for the upper states has been derived from transitions free of major resonance effects. The rotational structure of the ν5vibration also exhibits effects of Coriolis perturbation by a state identified as ν7+ ν11. Parameters for the perturber were determined from the interaction effects near the observed crossings, using a dyad model including first-orderb-Coriolis interaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call