Abstract

We present the electrical properties of p-n junction photodetectors comprised of vertically oriented p-GaAs nanowire arrays on the n-GaAs substrate. We measure an ideality factor as low as n = 1.0 and a rectification ratio >108 across all devices, with some >109, comparable to the best GaAs thin film photodetectors. An analysis of the Arrhenius plot of the saturation current yields an activation energy of 690 meV-approximately half the bandgap of GaAs-indicating generation-recombination current from midgap states is the primary contributor to the leakage current at low bias. Using fully three-dimensional electrical simulations, we explain the lack of a recombination current dominated regime at low forward bias, as well as some of the issues related to analysis of the capacitance-voltage characteristics of nanowire devices. This work demonstrates that, through proper design and fabrication, nanowire-based devices can perform as well as their bulk device counterparts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.