Abstract

The synthesis and coordination chemistry of two chiral tetradentate pyridylimine Schiff base ligands are reported. The ligands were prepared by the nucleophilic displacement of both bromides of 1,3-bis(bromomethyl)benzene (2) or 3,5-bis(bromomethyl)toluene (3) by the anion of (S)-valinol, followed by capping of both amine groups with pyridine-2-carboxaldehyde. Both ligands react with CoCl(2) and NiCl(2) to give [M(2)L(2)Cl(2)](2+) complexes. Remarkably, neither fluoride nor bromide ions can act as bridging ligands. The formation of [Co(2)((S)-3)(2)Cl(2)](2+) is highly diastereoselective, and X-ray crystallography shows that both metal centers in the [Co(2)((S)-3)(2)Cl(2)](CoCl(4)) complex adopt the lambda configuration (crystal data: [Co(2)(C(31)H(40)N(4)O(2))(2)Cl(2)](CoCl(4)).(CH(3)CN)(3), monoclinic, P2(1), a = 11.595(2) A, b = 22.246(4) A, c = 15.350(2) A, V = 3705(1) A(3), beta = 110.643(3) degrees, Z = 2). Structurally, the dinuclear complex can be viewed as a helicate with the helical axis running perpendicular to the [Co(2)Cl(2)] plane. The reaction of racemic 2 with CoCl(2) was shown by (1)H NMR spectroscopy to yield a racemic mixture of Lambda,Lambda-[Co(2)((S)-2)(2)Cl(2)](2+) and delta,delta-[Co(2)((R)-2)(2)Cl(2)](2+) complexes; that is, a homochiral recognition process takes place. Spectrophotometric titrations were performed by titrating (S)-3 with Co(ClO(4))(2) followed by Bu(4)NCl, and the global stability constants of [Co((S)-3)](2+) (log beta(110) = 5.7), [Co((S)-3)(2)](2+) (log beta(120) = 11.6), and [Co(2)((S)-3)(2)Cl(2)](2+) (log beta(110) = 23.8) were calculated. The results revealed a strong positive cooperativity in the formation of [Co(2)((S)-3)(2)Cl(2)](2+). Variable-temperature magnetic susceptibility curves for [Co(2)((S)-2)(2)Cl(2)](BPh(4))(2) and [Co(2)((S)-3)(2)Cl(2)](BPh(4))(2) are very similar and indicate that there are no significant magnetic interactions between the cobalt(II) centers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.