Abstract
Environmental contextDimethylsulfoniopropionate and dimethylsulfoxide could have a climatic influence especially in the polar areas. We investigate the effect of sea ice salinity and temperature on the production of these two sulfur metabolites by a polar microalga, and suggest their potential roles of osmoregulator and cryoprotectant. These results bring new information about the sulfur cycle in sea ice that is useful for climate models. AbstractThe Southern Ocean, which includes the seasonal ice zone (SIZ), is a source of large sea-air fluxes of dimethylsulfide (DMS), a climate active gas involved in Earth cooling processes. In this area, the prymnesiophyte Phaeocystis antarctica (P. antarctica) is one of the main producers of dimethylsulfoniopropionate (DMSP) and dimethylsulfoxide (DMSO), two metabolites that are precursors of DMS. These algae are also present in sea ice and contribute substantially to the high DMSP and DMSO concentrations observed in this habitat. DMSP and DMSO production in sea ice by P. antarctica is proposed to be promoted by its ability to live in extreme environmental conditions. We designed cell culture experiments to test that hypothesis, focusing on the impact of shifts of temperature and salinity on the DMSP and DMSO cell quotas. Our experiments show an increase in DMSP and DMSO cell quotas following shifts in salinity (34 to 75, at 4°C), which suggests a potential osmoregulator function for both DMSP and DMSO. Stronger salinity shifts (up to 100) directly impact cell growth and induce a crash of the cultures. Combining the salinity (34 to 75) and temperature (4°C to –2.3°C) shifts induces higher increases of DMSP and DMSO cell quotas that also suggests an implication of both metabolites in a cryoprotectant system. Experimental cell quotas (including diatom Fragilariopsis cylindrus quotas from a previous study) are then used to reconstruct DMSP and DMSO profiles in sea ice based on the biomass and taxonomy. Finally, the complexity of the transposition of rates obtained in the experimental domain to the real world is discussed.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have