Abstract
The objectives of this study were focused on the mechanism of mitochondrial dysfunction in skeletal muscle stem cells (MuSCs) from intrauterine growth restriction (IUGR) newborn piglets, and the relief of dimethylglycine sodium salt (DMG-Na) on MuSCs mitochondrial dysfunction by Nrf2/SIRT1/PGC1α network. In this study, six newborn piglets with normal birth weight (NBW) and six IUGR newborn piglets were slaughtered immediately after birth to obtain longissimus dorsi muscle (LM) samples. MuSCs were collected and divided into three groups: MuSCs from NBW newborn piglets (N), MuSCs from IUGR newborn piglets (I), and MuSCs from IUGR newborn piglets with 32 μmol DMG-Na (ID). Compared with the NBW group, the IUGR group showed decreased (P < 0.05) serum and LM antioxidant defense capacity, and increased (P < 0.05) serum and LM damage. Compared with the N group, the I group showed decreased (P < 0.05) MuSCs antioxidant defense capacity, mitochondrial ETC complexes, energy metabolites, and antioxidant defense-related and mitochondrial function-related gene and protein expression levels. The antioxidant defense capacity, mitochondrial ETC complexes, energy metabolites, and antioxidant defense-related and mitochondrial function-related gene and protein expression levels of MuSCs were improved (P < 0.05) in the ID group compared to those in the I group. The MuSCs of IUGR newborns activate the Nrf2/SIRT1/PGC1α network by taking in DMG-Na, thereby neutralizing excessive generated O2•− that may help to improve their unfavorable mitochondrial dysfunction in skeletal muscle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.