Abstract

Dimethyl phthalate (DMP), used as a plasticizer in industrial products, exists widely in air, water and soil. Staphylococcus aureus is a typical model organism representing Gram-positive bacteria. The molecular mechanisms of DMP toxicology in S. aureus were researched by proteomic and transcriptomic analyses. The results showed that the cell wall, membrane and cell surface characteristics were damaged and the growth was inhibited in S. aureus by DMP. Oxidative stress was induced by DMP in S. aureus. The activities of succinic dehydrogenase (SDH) and ATPase were changed by DMP, which could impact energy metabolism. Based on proteomic and transcriptomic analyses, the oxidative phosphorylation pathway was enhanced and the glycolysis/gluconeogenesis and pentose phosphate pathways were inhibited in S. aureus exposed to DMP. The results of real-time reverse transcription quantitative PCR (RT-qPCR) further confirmed the results of the proteomic and transcriptomic analyses. Lactic acid, pyruvic acid and glucose were reduced by DMP in S. aureus, which suggested that DMP could inhibit energy metabolism. The results indicated that DMP damaged the cell wall and membrane, induced oxidative stress, and inhibited energy metabolism and activation in S. aureus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call