Abstract

AbstractThis study presents a numerical investigation of the dimerization of polyglutamine homo‐peptides of varying length. It employs the PRIME20 intermediate resolution protein model and studies it with a flat‐histogram type Monte Carlo simulation that gives access to the thermodynamic equilibrium of this model over the complete control parameter range (for the simulations this is temperature). For densities comparable to typical in vitro experimental conditions, this study finds that the aggregation and folding of the polyglutamine chains occur concurrently. However, as a function of chain length the sequence of establishment of intra‐ and intermolecular hydrogen bonding contacts changes. Chains longer than about N = 24 polyglutamine repeat units fold first and then aggregate. This agrees well with the experimental finding that, beyond N = 24 the single polyglutamine chain is the critical nucleus for the aggregation of amyloid fibrils. A finite size scaling of the ordering temperatures reveals that for this chain length (and longer chains) folding occurs at physiological (respectively larger) temperatures, whereas shorter chains are disordered at physiological conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.