Abstract

The binding of divalent haptens to IgE-class antibodies leads predominantly to their oligomerization into open and closed dimers. Kinetics of the open dimer formation was investigated by fluorescence titrations of Fab fragments of monoclonal DNP-specific IgE antibodies with divalent haptens having different spacer length (gamma = 14-130 A). Binding was monitored by quenching of intrinsic tryptophan emission of the Fab. Addition of divalent haptens with short spacers (gamma = 14-21 A) to the Fabs at rates larger than a distinct threshold value caused a significant decrease of Fab-binding site occupation in the initial phase of the titration. This finding was interpreted to reflect a nonequilibrium state of hapten-Fab-binding. Such nonequilibrium titrations were analyzed by inserting a kinetic model into a theory of antibody aggregation as presented by Dembo and Golstein (Histamine release due to bivalent penicilloyl haptens. 1978. J. Immunol. 121, 345). Fitting of this model to the fluorescence titrations yielded dissociation rate constants of 7.8 x 10(-3) s-1 and 6 x 10(-3) s-1 for the Fab dimers formed by the flexible divalent haptens N alpha, N epsilon-di(dinitrophenyl)-L-lysine (gamma = 16 A) and bis(N beta-2,4-dinitrophenyl-alanyl)-meso-diamino-succinate (gamma = 21 A). Making the simplifying assumption that a single step binding equilibrium prevails, the corresponding dimer formation rate constants were calculated to be 1.9 x 10(5) M-1 s-1 and 1.1 x 10(4) M-1 s-1, respectively. In contrast, all haptens with spacers longer than 40 A (i.e., bis(N alpha-2,4-dinitrophenyl-tri-D-alanyl)-1,7-diamino-heptane, and di(N epsilon-2,4-dinitrophenyl)-6-aminohexanoate-aspartyl-(prolyl)n-L-l ysyl (n = 24, 27, 33) exhibit a relative fast dimerization rate of the Fab fragments (greater than 7 x 10(6) M-1 s-1). These observations were interpreted as being caused by orientational constraints set by the limited solid angle of the reaction between the macromolecular reactants. Thus, ligands having better access to the binding site would react faster.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call