Abstract

Dimeric cynnamoyl analogues (DCAs) with depigmenting activity have been developed. In this study, a role of diamide linkage chain length of DCAs as a tyrosinase inhibitor was investigated on tyrosinase inhibitory activity, antioxidative activity, hydrophobicity and anti-melanogenesis as well as structural characteristics and dipole moments based on density functional theory. DCAs with different diamide-link chain lengths (n = 2, 3, and 4) and various functional groups (m-coumaroyl, p-coumaroyl, isoferuloyl and feruloyl groups) were synthesized. DCAs with a diamide-link chain length of three indicated high inhibitory effect of melanin production on α-melanocyte stimulating hormone (α-MSH) stimulated B16F1 cells. Approach of p-hydroxyl group of DCAs to active site of tyrosinase, an important melanogenic enzyme, is interfered by addition of m-methoxy group. In structural modeling based on density functional theory, DCAs with a diamide-link chain length of three showed folded shapes, and they had lower dipole moment than with a diamide-link chain length of two or four. Thus, for the enhancement of the depigmenting activities of dimeric compounds, the diamide-link chain length is important. Our results provide an important index for the design of dimeric compounds with physiological activities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call