Abstract

The bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2) is a key regulator of carbohydrate metabolism in liver. The goal of this study was to elucidate the regulatory role of Ser-32 phosphorylation on the kinase domain mediated dimerization of PFK-2/FBPase-2. Fluorescence-based mammalian two-hybrid and sensitized emission fluorescence resonance energy transfer analyses in cells revealed preferential binding within homodimers in contrast to heterodimers. Using isolated proteins a close proximity of two PFK-2/FBPase-2 monomers was only detectable in the phosphorylated enzyme dimer. Thus, a flexible kinase interaction mode exists, suggesting dimer conformation mediated coupling of hormonal and posttranslational enzyme regulation to the metabolic response in liver. Structured summary of protein interactionsPFK-2/FBPase-2 physically interacts with PFK-2/FBPase-2 by fluorescent resonance energy transfer (View Interaction: 1, 2)PFK-2/FBPase-2 physically interacts with PFK-2/FBPase-2 by two hybrid (View interaction)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.