Abstract

The computational complexity of Markov chain Monte Carlo (MCMC) methods for the exploration of complex probability measures is a challenging and important problem in both statistics and the applied sciences. A challenge of particular importance arises in Bayesian inverse problems where the target distribution may be supported on an infinite-dimensional state space. In practice this involves the approximation of the infinite-dimensional target measure defined on sequences of spaces of increasing dimension bearing the risk of an increase of the computational error. Previous results have established dimension-independent bounds on the Monte Carlo error of MCMC sampling for Gaussian prior measures. We extend these results by providing a simple recipe for also obtaining these bounds in the case of non-Gaussian prior measures and by studying the design of proposal chains for the Metropolis--Hastings algorithm with dimension-independent performance. This study is motivated by an elliptic inverse problem with non...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.